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SUMMARY 

This paper presents new finite element formulations of the shallow-water wave equations which use 
different basis functions for the velocity and height fields. These arrangements are analysed with the 
Fourier transform technique which was developed by Schoenstadt,' and they are also compared with 
other finite difference and finite element schemes. The new schemes are integrated in time for two 
initial states and compared with analytic solutions and numerical solutions from other schemes. The 
behaviour of the new forms is excellent and they are also convenient to apply in two dimensions with 
triangular elements. 
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1. INTRODUCTION 

Winninghoff ,2 Arakawa and Lamb3 and Schoenstadt' have demonstrated the superiority of 
spatial staggering of dependent variables in finite difference formulations of the shallow 
water equations in a rotating co-ordinate system. These staggered formulations give much 
better solutions when there are small scale initial conditions or small scale forcing. Also the 
phase speeds of the inertial-gravity waves are more accurate when an appropriate staggered 
grid is used. Staggered finite difference schemes are now widely used in meteorology and 
oceanography. Schoenstadt' found similar results with finite element formulations with 
piecewise linear basis functions. In particular the arrangement with velocity nodal points 
midway between height nodal points in one dimension is far superior to the usual arrange- 
ment with coincident nodal points. However this arrangement with staggered basis functions 
is not convenient to use especially in two dimensions with irregular geometry. 

In this paper an alternative formulation will be presented which uses different basis 
functions for height and velocity. One of the basis functions is piecewise constant while the 
other is piecewise linear. They are arranged so that the linear portion of the latter covers the 
same domain as one of the former functions. This greatly simplifies the application of the 
method in two-dimensional irregular domains. It will be shown that the linearized E M  
equations give excellent solutions when applied to the geostrophic adjustment problem. The 
time continuous equations will be analysed with the Fourier transform method developed by 
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Schoen~tadt,'.~ and compared with other finite difference and finite element schemes. The 
various schemes will be integrated numerically for a particular set of initial conditions, and 
compared to the exact solution. Advective effects with a mean flow will be investigated 
with the two finite element arrangements. 

2. FORMULATION 

The linearized shallow-water equations with constant mean flow U can be written: 

a u  au ah 
a t  ax ax 
-+ U--fv + g- = 0, 

av av 
a t  ax 
-+ U-+fu =o, 

ah ah au -+U--+H--=O, 
at  ax ax (3) 

where u and v are the perturbation velocities in the x- and y-directions, and H and h the 
mean and perturbed heights of the free surface. Also f is the Coriolis parameter and g 
represents gravity. All quantities are assumed independent of y, although H varies according 
to U =  -f-'gaH/ay. In addition the term vaH/ay is neglected in (3); this term is only 
important for very large scale flow. 

In the Galerkin formulation the dependent variables are approximated with the basis 
functions cpj(x) and 0,(x) as follows: 

where the repeated index indicates a summation from 1 to N. With these representations, 
equations (1) and (2) are required to be orthogonal to q, (x ) ,  and (3) is required to be ortho- 
gonal to 0,(x), which gives: 

Here i ranges from 1 to N and all fields are periodic in x over distance L. 
The two basis functions for arrangement I are given in Figure 1, where qi(x) is piecewise 

linear and @(x) is piecewise constant. Note that cpi(x) is centred at x = ihx while @(x) is 
centred at x = (i + 1/2)Ax. It will be shown that this arrangement has the same advantages as 
a formulation with piecewise linear basis functions which are staggered. With this arrange- 
ment the constant portion of 0, covers the same space as one of the linear portions of qi. This 
will be a great advantage in two dimensions when the domain is broken into say triangular 
elements. When the basis functions shown in Figure 1 are introduced into (5)-(7), the 
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prediction equations become: 

Arrangement I 

where Mijq = (l/6)~,+~+(2/3)14 +(1/6)4-,. The integral in the advection term, I ei&3,/ax dx, 
is computed with the modified basis function 0: which is shown in Figure 2. After 
integration, (see Figure 2), E is allowed to go to zero. 

The basis functions for arrangement 11, which are obtained by reversing the functions in 
arrangement I, are shown in Figure 3. When these basis functions are introduced into 
(4)-(7), the prediction equations become: 

Arrangement I1 

where the procedure involving the special basis function shown in Figure 2 is also required to 
obtain (11) and (12). 

Figure 2. Modified basis functions 
& X  used for advection terms 
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Figure 3. Basis functions for ar- 
O x--+ 26 rangement I1 (2~---overlap region) 

Arrangements I and I1 give identical equations if mass lumping is carried out, that is when 
the mass matrix Mij is replaced by the identity matrix Aj. These mass lumped equations are 
exactly the same as the equations obtained with finite difference scheme B, which has height 
points equidistant between velocity points. Winninghoff ,2 Arakawa and Lamb,3 and Schoen- 
stadt’ have shown that scheme B handles small scale noise very well. Also Schoenstadt’ has 
demonstrated that this scheme is superior to a finite element formulation with unstaggered, 
piecewise linear basis functions. 

3 .  FOURIER TRANSFORM ANALYSIS 

In this section we will apply the Fourier transform analysis technique that was developed by 
Schoen~tadt”~ for the geostrophic adjustment problem. This will allow comparisons with 
other finite difference and finite element formulations. The geostrophic adjustment process 
is very important in meteorology and oceanography where most of the larger scale motion 
fields are in approximate geostrophic balance. The wind is in geostrophic balance when the 
pressure gradient force and the Coriolis force balance. In system (1)-(3) the geostrophic 
components are 

When the initial conditions are not in geostrophic balance, inertial gravity waves will be 
excited which propagate away from the region of initial imbalance. If the region of initial 
imbalance is confined, a steady state will be reached which is in geostrophic balance. It is very 
important that a numerical weather prediction model properly stimulate this process. An 
example will be presented in Section 4 with numerical solutions from various schemes. 

In order to analyse this process following Schoenstadt4 the equation set (1)-(3) is Fourier 
transformed in x which gives: 

where 

dii 
- = fii - ikgk, 
dt 

dii 
dt 

dk 
- = -ikHii, 
dt 

- = -fG, 

m 

ii(k, t) = u(x, t)e-ikx dx, 

and similarly for ii and I%. This portion of the analysis is simplified by setting U=O.  
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Schoenstadt4 solved these equations subject to initial conditions by the eigenvalue- 
eigenvector approach which gives: 

- 
(18) 

210 i kgho 
6 (k, t )  = Go cos vt + f - sin vt - - sin vt, 

V V 

f 6(k,t)= --sinvtt  
V V 

ikH ikfH 
V V 2  

6(k, t )  = -- 6, sin vt -- [l -cos vt]6,+ 

where: 

v2 = f2 + k2gH. (21) 

The finite element equation sets @)-(lo) and (11)-(13) can be transformed following 
Schoenstadtl and written in the following general form: 

dii 
dt 

a - = af6 - ipgc;, 

du” 
dt 
dh“ 
dt 

a - = -afii, 

y - = -ipHii, 

where the coefficients a, y and p for arrangements I and I1 are given in Table I. This 
analysis is easily carried out by noting for example that the transform of hi+l is equal to 

etc. When these equations are solved subject to initial conditions the following set of 
solutions is obtained: 
keikAx 

fu”0 ii=ii,cosvt-- ipgho sin vt + - sin vt 
a V  V 

i f w  - f  
V 2  V 

U’=-(l-cos vt)ho--sin do+ 

ii0ipH sin vt 6 = [ ~ Y C O S  vt (cos vt - 1) - > 
a y v  YV 

where 

The comparison of these solutions with the exact solutions (18)-(20) shows that they have 
the same form, but various coefficients are modified by spatial truncation error. The exact 

Table I 

Arrangement a! Y P 
Differential 1 1 k 
I (2 + cos kAx)/3 1 sin (kAx/2)/(Ax/2) 
I1 1 (2+cos kAx)/3 sin (kAx/2)/(Ax/2) 
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Table 11 

coefficients dependent on l lu ,  klu and klv2 and the corresponding expressions for the finite 
element schemes are given in Table 11. The exact frequency is given by (21), while the finite 
element form is given by (28). When the relations in Table I are used in the latter equation, 
it can be seen that u is the same for arrangements I and 11. The other terns such as plav and 
plyu show no obvious advantage for either arrangement because the formulas for (Y and y 
are merely interchanged between the two arrangements. In Section 5 these arrangements will 
be compared with other schemes by integrating the equations in time from a particular initial 
state, and some differences will be noted in the final velocity field. 

It is useful to compare the phase speed and group velocity obtained from these basis 
funtion arrangements with other finite element and finite differences formulations. Figure 
4(a) contains the phase velocity c = u/k as a function of kAx/rr. The figure includes curves for 
the following: 1 analytic solution; 2 finite difference scheme A; 3 E M  scheme A; 4 finite 
difference scheme B; 5 FEM scheme B; 6 arrangements I and 11. Curves 1-5 in Figures 4 
and 5 are taken from Schoenstadt.' Finite difference scheme A carries u, u and h at all 

2 

1 1  ~ 5 -1 

0 0.2 0.4 0.6 0.8 1.0 

-2  k A x / r r - +  

b 

1 I I 
0.2 0.4 0.6 0.8 1.0 

k & x / r r - b  

Figure 4. The phase velocity c = vlk, and the group velocity G =duldk as functions of 
kAx/rr for the various schemes. The curve numbering is given in the text. These results use 

the following values: gH = lo4 m2 s-?, f = s-', Ax = 500 km 
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Figure 5. The coefficients llv, klv and k/v2 as functions of k A x / n  for the same conditions used in Figure 4 
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points and FEM scheme A uses piecewise linear basis functions for u, z) and h. Finite 
difference scheme B places u, z) grid points between h points and FEM scheme B employs 
piecewise linear basis functions with the u, v nodal points equidistant between the h nodal 
points. The analytic solution (curve 1) approaches flk for small k and (gH)”/” for large k. 
Scheme A (curve 2) gives the poorest phase speed and FEM scheme A (curve 3) is also very 
poor for the highest wave numbers. The FEM scheme B (curve 5) is very close to the analytic 
solution. Arrangements I and I1 (curve 6) also give excellent phase velocities. If arrange- 
ments I and I1 are mass-lumped they reduce to scheme B (curve 4) which is better than the 
unstaggered schemes. 

The group velocity G = dv/dk is given in Figure 4(b) for the same schemes. The analytic 
solution is zero at k = 0 and it approaches (gH)’” for large k. Scheme A (curve 2)  and its 
finite element version (curve 3) are very poor for the short waves (large k) since they 
propagate energy in the wrong direction. The best group velocity is for FEM scheme 13 
(curve 5) ,  but arrangements I and I1 (curve 6) are also good. 

The coefficients given in Table I1 which correspond to l/v, k/ is given in Figure 4(b) for the 
same schemes. The analytic solution is zero at k = 0 and it approaches (gH)”” for large k.  
Scheme A (curve 2) and its finite element version (curve 3) are very poor for the short waves 
(large k) since they propagate energy in the wrong direction. The best group velocity is for 
FEM scheme B (curve 5 ) ,  but arrangements I and IT (curve 6) are also good. 

The coefficients given in Table I1 which correspond to llv, k/v and klv2 are given in 
Figures 5(a), 5(b) and 5(c). The first figure, which includes the same schemes as Figure 4, is 
important because l / v 2  relates the initial height to the final steady state height [see (20)]. 
Scheme A (curve 2) and FEM scheme A (curve 3) are very poor for the shortest waves. In 
fact if ii0 = 0 the final h for k = T/AX is more than 25 times too large for these schemes. This 
illustrates the production of small scale noise by non-staggered grids, All of the staggered 
schemes are much better, and the best is m M  scheme B (curve 5). Arrangements I and I1 
also give excellent solutions. 

Figure 5(b) shows the representations of klv for various schemes, but as is indicated in 
Table 11, arrangements I and I1 each have three representations. The quantity p/J(ayp), 
which is the same for both arrangements, is curve 6. The terms p/av and p / y v  for 
arrangement I are represented by curves 7 and 8 respectively. These terms for arrangement 
I1 are obtained by interchanging the curves since a and y are interchanged. As with the 
previous figures schemes A and FEM A are the poorest and FEM scheme B is the best. 
Curve 6 for p/J(ayv) is very good, but curves 7 and 8 for plav and plyv are poor. 
However, as may be seen in (25) and (27) these coefficients do not affect the final steady 
state and they are related to either u or its initial value. Thus the unusual behaviour of these$ 
coefficients should have little effect on the geostrophic adjustment process and no effect on 
the final steady state. 

Figure 5(c) contains the representations of k/v2 for the various schemes including the 
corresponding terms p/av2 and plyv2 for arrangements I and TI (see Table 11). The worst 
curves are for schemes A and E M - A ,  and the best is for FEM scheme B. Curve 6 gives 
p/av2 and curve 7 p l y 2  for arrangement I, and the curves are interchanged for arrangement 
11. These curves lie on both sides of the analytic curve and they represent about the same 
error as with scheme B (curve 4). These coefficients are important because they appear in 
expressions for h and z), and because they affect the steady state solutions. 

The analyses of this section show that the unstaggered finite difference and finite element 
schemes are poor for small scales with respect to phase speed, group velocity and final 
adjusted structure. The best scheme is the staggered finite element formulation with 
piecewise linear basis functions. However, the mixed basis function arrangements introduced 
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in this paper also do very well, and they give the same curves in Figure 4 and Figure 5(a) as were 
obtained by Williams' for a FEM vorticity-divergence formulation. 

4. NUMERICAL EXAMPLE OF GEOSTROPHIC ADJUSTMENT 

In this section the various schemes, which were examined in Section 3, will be compared by 
direct numerical integration in x and t. Two aspects of the geostrophic adjustment process 
must be considered in assessing a particular numerical scheme: (i) forecast time required to 
reach the adjusted state; (ii) the accuracy of the final adjusted state. The group velocity 
curves in Figure 4(a) provide an indication of the comparative adjustment times for the 
various schemes. The final adjusted state, which is more important, could be obtained by 
Fourier transforming the terms that are independent of t in (25)-(27). However, in this paper 
the final state will be determined by integrating the finite difference equations in t until the 
adjusted state is reached. This approach is preferable because time differencing effects are 
included and a time filter can be used. 

The various schemes are integrated by introducing centred time differences, and the time 
filter developed by Robert6 (see also Asselin7) is applied to the past time value with the 
coefficient y = 0-05. The FEM schemes use Gauss elimination to invert the mass matrix. 

The initial conditions are given by: 

u(x, 0)  = v(x, 0)  = 0. 

The analytic solution for the final adjusted h field is given by the following expression which 
was derived by Schoen~tadt:~ 

where h, is the final adjusted height and LR = (gH)li2f is the Rossby radius of deformation. 
Also sgn (x) means the sign of x. The initial geostrophic wind which is required in (30) can be 
written: 

~*(x,O)=-[S(x+Ax/2)- ag 
f ax f 

S(x - 

where 6(x) is the delta function. 
When (29) and (31) are introduced into (30), the height solution becomes: 

e-x/LR sinh (Ax/2LR) Ax12 < x 
h,(x) = a 1 - e-Ax/2LR cosh (x/LR) -hx/2 I x i Ax/2 (32) 

sinh (Ax/2LR) X <  - A 4 2  

-e-x/LR sinh (Ax/2LR) Ax12 < x 

i 
This analytic solution is given in Figure 6. The solution for the northward component is 
obtained from the geostrophic condition v, = f-lga h,/& as follows: 

v, = a J(g/H) -e-Ax12LR sinh (x&) -Ax12 i x 5 Ax12 (33) i sinh (Ax/2LR) x < -Ax12 

This analytic solution is included in Figure 7 for x > 0. 
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l \ X h  A A 
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Figure 6.  The h solutions for schemes A, B and FlEM A functions of x/Ax at t = 3 
days. The steady-state analytic solution, which is given by (32) is also included 

The numerical integrations with the various schemes are performed on  a grid of 200 points 
with cyclic boundary conditions. The initial disturbance at x = 0 is placed in the centre of the 
computational domain so that the cyclic boundary conditions will not affect the solution near 
x = 0 until well after the adjusted state is reached. For each scheme the initial disturbance is 
placed at a single point although formal application of the Galerkin procedure to (4) could 
affect other points. Figure 6 includes the numerical solution at t = 3 days for the following 
schemes: A, B and FEM A. Scheme A shows strong oscillations with every other point 
returning to 0. FEM A has smaller oscillations near x = 0, but they become larger than the 
oscillations for scheme A further out. This is apparently caused by the spuriously large group 
velocity. Scheme B gives very smooth behaviour and it is close to the analytic solution. Table 
I11 compares the solutions for all of the schemes at x = 0 and x =Ax. The best schemes are 
FEM B and arrangements I and 11. The behaviour of the various schemes (Figure 6 and 
Table IIT) is consistent with the curves for l / v  shown in Figure S(a), since Ls is proportional 
to l / w 2  [see (20)]. 

Figure 7 includes some of the numerical solutions for v at t = 3 days as well as the analytic 
solution given by (33).  Only the positive x variation is shown since the solutions are odd 
functions of x. The analytic solution has extremes at x = f Ax/2 and decays exponentially for 
large 1x1. The solutions for schemes A and FEM A show large oscillations as was seen for the 
h field in Figure 6. Arrangements I and I1 give much better solutions, as expected, from their 
h field which is shown in Figure 6. However, arrangement I gives an extremely accurate 
solution at point x = Ax/2. This can be explained by first noting that the final state satisfies 
the geostrophic relation fv - g ahlax = 0. Arrangement I handles this relation more accurately 
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Table I11 

X 0 Ax 

Analytic 0.221 0.153 
A 0.459 0.0 

FEM A 0.298 0.084 
B 0-240 0.148 

FEM B 0.227 0.157 
Arrangements I, I1 0.213 0.154 

mass matrix for the Coriolis term fv [see (8) and (ll)]. The factor of 
l/a can be seen in the steady state portions of (26), and in the difference between the curves 
in Figure 5(c) for arrangements I and 11. 

because it uses the full 

5. ADVECTIVE EFFECTS 

The advective terms which involve U in equations (1)-(3) are very important in most 
meterological and oceanographic problems. These effects were neglected in Sections 3 and 4 
which treated the geostrophic adjustment process. Solutions of the form eik(r-ct) to the set 
(1)-(3) give the phase velocities 

The first solution, which corresponds to the steady state solution in Sections 3 and 4, is the 
most important for many geophysical problems. 

Arrangements I and I1 treat the advective process differently depending on whether or not 
the full matrix is used in a particular equation. To illustrate this effect consider the simple 
advection equation, 

agat + u agax = 0. (35) 
With arrangements I and 11 this equation is written 

or 

where (36) employs the full mass matrix and (37) is mass lumped. The computational phase 
speed can be found by substituting c=Aeik(X-Cpf) into each equation and solving for cF. 
Equation (36) gives 

3 sin (kAx)  
cF= u(Z+cos k A x )  k A x  

and (37) gives 

sin ( k h x )  
cF= u 

k A x  * 
(39) 
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The analytic solution to (35) is c = U and both (38) and (39) approach U as Ax --.$ 0 for fixed 
k.  Figure 8 contains c,/U for (38) and (39) as a function of kAx1-r. Clearly the full mass 
matrix form (36) is much more accurate than the mass-lumped form (37). 

In order to compare arrangements I and I1 for the advective solution c = U it is important 
to determine whether or not one of the basic equations (1)-(3) is more important than the 
others for small scale motions. Geostrophic adjustment theory [see for example Section 2.8 in 
Haltiner and Williams’] states that when the initial scale L is less than LR, the final state is 
mainly determined by the initial wind field and when L is greater than LR the final state is 
mainly determined by the initial height field. The critical scale LR is called the Rossby radius 
of deformation and it is given by 

LR=(gH)’/’/f. (40) 
This suggests that when LR is greater than Ax, the equations of motion (1) and (2)  will have 
more effect on the phase speed than the continuity equation (3). In that case arrangement I 
should be better because it gives a more accurate treatment of the advective term since it 
uses the full mass matrix. Conversely when Ax is greater than L, arrangement I1 should be 
superior. 

In order to test these ideas, the two schemes will be integrated numerically from a 
particular initial state for various values of Ax/LR. The initial conditions are: 

h(x, 0) = a cosN - ( 3 9  

t 
3 

P 
\ 

10 

0 8  

0.6 

0.4 

0.2 

0 

u(x, 0)  = 0, 

I- Mass Lumped 4\ \ 

0 2  0 4  0 6  0 8  1 

k 5 x / l r - b  

Figure 8. The ratio C,/U for the full mass matrix (36) and mass lumped (37) forms of the advection 
equation as functions of k A x J v  
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Figure 9. The initial h field as given by (41) 

where a is the amplitude and W is the width of the computationz.. domain. The initial field 
is geostrophically related to h, which means that the initial field will move with the speed 
c = U [see (3411. Figure 9 gives the initial height field for N = 10 000 and W = 200 Ax. Note 
that this small scale field has a large height change over one grid length, and it should be very 
sensitive to the numerical scheme which is used. 

Arrangements I and I1 are integrated for five days using a mean flow of U = 10 m s-' with 
the numerical techniques which were discussed in Section 4. Figure 10 shows the numerical 
solutions for Ax = 5LR and Ax = LR/5 obtained with arrangement I. The exact solution is 
also included. Generally the numerical solutions move too slowly, have too small amplitude, 
and contain fictitious short waves. This behaviour occurs because the numerical solutions are 
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Figure 11. The same as Figure 10 except for arrangement I1 

falsely dispersive as can be seen in Figure 8. A localized disturbance such as the one shown 
in Figure 9 is composed of many Fourier components, and if these components have 
different phase speeds because of numerical truncation, they will begin to move out of phase 
with each other. This reduces the maximum amplitude and it leads to the appearance of 
wiggles. The numerical solution also moves too slowly, because each wave is too slow (see 
Figure 8). In Figure 10 it is seen that the solution with Ax = LR/5 is superior to the one with 
Ax = 5LR as regards to amplitude, phase speed and smallness of wiggles. Figure 11 shows the 
same fields for arrangement 11. In this case the solution for Ax=5LR is superior to the 
solution for Ax = &/5. These results are entirely consistent with the discussion presented 
earlier in this section. Arrangement I should be used when LR>Ax and arrangement I1 
should be used when LR < Ax. In most meteorological applications LR > Ax, but large scale 
ocean circulation models do often have LR < Ax. 

6. CONCLUSIONS 

Schoenstadt' has developed a technique for analysing finite difference and finite element 
prediction schemes which are based on the linearized shallow-water equations. The techni- 
que treats the geostrophic adjustment problem by applying the spatial Fourier transform to 
the system of equations. The solutions for arbitrary initial conditions are written in terms of 
various coefficients which can be evaluated as a function of wave number for each numerical 
scheme. Schoenstadt' analysed a variety of finite difference and finite element schemes and 
some of his results were reported in this paper. Schoenstadt found that the finite element 
formulation which uses the same piecewise linear basis functions for all variables ( E M  
scheme A) is very poor for the shortest wavelengths. However, when the basis functions are 
staggered in such a way that the velocity nodal points are midway between the height nodal 
points (FEM scheme B), he found excellent solutions. Similar behaviour was found for finite 
difference equations as had been previously examined by Winninghoff' and Arakawa 
and Lamb.3 
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FEM scheme B handles geostrophic adjustment extremely well, but ii would be compli- 
cated to apply in two dimensions with the nonuniform, general, elements [such as those 
discussed by Zienkiewicz’]. In this formulation the velocities and the height are represented 
with different basis functions. In arrangement I piecewise linear basis functions are used for 
the velocities and piecewise constant €or the height. The basis functions are interchanged in 
arrangement 11. These arrangements were examined with the Schoenstadt technique and it 
was found that both handle the geostrophic adjustment process very well. In particular both 
arrangements give the same phase speeds and group velocities which are nearly as good as 
those given by FEM scheme B. 

Arrangements I and I1 and some of the other schemes were integrated with leapfrog time 
differences as an example. The initial state was at rest with an initial height perturbation at a 
single point. The equations were integrated until a balanced state was achieved where the 
pressure gradient force was balanced by the Coriolis force. FEM scheme A provided a very 
poor solution which falsely oscillated from point to point. The spatially staggered schemes 
came very close to the analytic steady solution. Arrangement I was excellent and a little better 
than arrangement 11, because it does a better job on the Coriolis terms. 

The two arrangements were also compared by integrating the equations with a mean 
current, and a small scale initial disturbance which was in geostrophic balance. The various 
integrations showed that arrangement I is more accurate when L,>Ax and arrangement I1 
is better when LR < Ax, where L, is the Rossby radius of deformation. 

Although the applications in this paper all include the Coriolis force, it can be expected 
that arrangements I and I1 will give excellent results in various nonrotating applications. For 
example the phase velocities in Figure 4(a) show that arrangements I and I1 are superior to 
FEM scheme A for the shorter wavelengths where the Coriolis effects are less important. 
Arrangements I and TI should produce much less small noise than FEM scheme A because 
the pressure gradient and divergence terms in equations (1) and (3)  respectively, are handled 
more accurately. The two arrangements are now in the process of being tested in nonlinear, 
two-dimensional versions at the University College of Swansea. 
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